Hemorrhagic and Ischemic Stroke

Donna Lindsay, MN, RN, CNS-BC, CCRN, CNRN
Neuroscience Clinical Nurse Specialist
Stroke Program Coordinator
Hennepin County Medical Center

Hemorrhagic v. Ischemic Strokes

15% Hemorrhagic
85% Ischemic

Etiology and Subtypes of Stroke

Stroke Statistics

- Approximately 795,000 Americans suffer a stroke each year with nearly 77% being first time strokes.
- Stroke recently dropped to the 5th leading cause of death in the US but remains the leading cause of serious, long-term disability.
- On average in the US, every 40 seconds someone has a stroke and every 4 minutes someone dies.
- 87% of all strokes are ischemic, 10% are intracerebral hemorrhage, and 3% are subarachnoid hemorrhage.

Stroke Statistics in Minnesota

- Over 97,000 Minnesotans have had a stroke
- Approximately 11,500 new strokes occur each year
- Stroke is the 5th leading cause of death and the leading cause of long-term disability
- In 2011, $414 million was spent on hospital care for stroke

Stroke Statistics

- Cost of Stroke in the United States:
 - 2012 Estimates:
 - Direct cost (provision of care) = $71.55 billion
 - Indirect cost (lost of productivity) = $33.65 billion
 - Total cost = 105.2 billion
 - Projected 2030 Estimates*:
 - Direct cost = $183.13 billion
 - Indirect cost = $56.54 billion
 - Total cost = $239.67 billion

* 2030 estimates calculated based on current stroke rates and aging of population. It is projected that by 2030, 3.88% of the population in the U.S. will have had a stroke.
Images have been removed from the PowerPoint slides in this handout due to copyright restrictions.

Modifiable Risk Factors

- Hypertension
- Atrial fibrillation
- Diabetes
- Hyperlipidemia
- Smoking
- Heart Disease
- Carotid Artery Disease
- Sleep Apnea
- Oral contraceptives
- Clotting Disorders
- Vasculitis
- Lifestyle: obesity, diet, exercise, alcohol, illicit drugs

Uncontrollable Risk Factors

- Age – risk doubles every decade after age 55
- Gender
 - Women have greater number of strokes every year due to longer life span, but men have greater number of strokes in the younger population.
- Race – risk related to incidence of stroke risk factors
 - African American have twice the risk
 - Increased risk in Hispanic and Native American population
- Family history

Stroke Warning Signs

- Sudden weakness or numbness of the face, arm or leg, especially on one side of the body
- Sudden confusion, trouble speaking or understanding
- Sudden trouble seeing in one or both eyes
- Sudden trouble walking, dizziness, loss of balance or coordination
- Sudden, severe headaches with no known cause (for hemorrhagic stroke)

F.A.S.T.

- F = Face Ask the person to smile.
- A = Arms Ask the person to raise both arms to check for a drift.
- S = Speech Ask the person to repeat a simple sentence.
- T = Time Take action and alert immediately.

Stroke Types

- **Ischemic**
 - Atherothrombotic
 - Embolic
 - Transient Ischemic Attack
- **Hemorrhagic**
 - Intracerebral Hemorrhage
 - Subarachnoid Hemorrhage

Ischemic Stroke

- **Embolic**
 - Caused by a blood clot dislodged from a distant source
 - Atrial fibrillation
 - Heart valve replacement
- **Thrombotic**
 - Caused by occlusion of a cerebral vessel from atherosclerosis or plaque formation
Ischemic Stroke: Embolic-vs-Atherothrombotic

Atherothrombotic

- Atherosclerotic changes in the vessel wall, typically causing stenosis (narrowing)
- Irregular wall shape catches platelets as they circulate in the blood
- Additional platelets are attracted to the site leading to thrombus formation and occlusion

Atherothrombotic

- Atherosclerotic plaque may rupture (sometimes called ulcerative plaque)
- Platelets and other clotting factors are attracted to the injured area and a combination of plaque and thrombus occlude the vessel

Most Common Causes of Cardioembolic Stroke

- Atrial Fib
- Dilated Cardiomyopathy
- Infective Endocarditis
- Rheumatic Heart Disease
- Prosthetic Valves
- Atrial Septal Defects

Ischemic Stroke: Artery to Artery Emboli

Ischemic Stroke

- Reduced blood flow distally
- Small or large vessel disease
 - Large vessel more common
 - Small vessel aka “lucunar infarction”
- Slightly higher incidence in men versus women
- TIA’s in 30-50% of cases
Important Facts About TIAs

- The prevalence of transient ischemic attacks (TIA) increases with age. (Cerebrovasc Dis. 1996; 6[suppl 1]:26–33.)
- About 15 percent of strokes are preceded by a TIA. (Cerebrovasc Dis. 1996; 6[suppl 1]:26–33.)
- About half of patients who experience a TIA fail to report it to their healthcare providers. (Neurology. 2003;60:1429–1434.)

Stroke Mimics

- Hypoglyemia
- Migraine
- Seizures
- Syncope
- Transient global aphasia
- Peripheral nerve disorders
- Intracranial hemorrhage, tumor, abscess
- Psychogenic episodes
- Metabolic disturbances

Diagnostic Evaluation

- Physical Exam/History/Time of onset
- Brain imaging (CT or MRI)
- Neurovascular imaging of head and neck (CTA, MRA)
- EKG - 12-lead and continuous monitoring
- Lab Work
- Further Cardiac Work-Up
- Cerebral Angiography

Treatment of Ischemic Stroke

- Reperfusion Strategies
 - Intravenous tPA – 0-4.5 hour Tx window
 - Intra-arterial thrombolysis (tPA) – 0-6 hour Tx window
 - Mechanical thrombectomy
 - Stent Retrievers
 - Thrombo-aspiration
 - 0-6 hour Tx window in anterior circulation
 - 0-24 hour Tx window in posterior circulation
 - Considered for moderate to severe “Wake-Up” strokes
 - On-going research in 6-16 hour window

Penumbra™ Thrombo-aspiration Device
Tissue Plasminogen Activator (tPA)

- Fibrinolytic that assists with dissolving clots.
- Produced endogenously by endothelial cells.
- Converts proenzyme plasminogen to activated enzyme plasmin. (Dissolves fibrin clots.)
- Serum ½ life is 4-6 minutes but when bound to the fibrin of a clot this time is lengthened.
- Criteria for administration is very stringent.

Post Recanalization Considerations

- Frequent vital signs (q 15 min x 2 hours, then q 30 minutes x 6 hours, then hourly x 16 hours)
- Frequent neuro checks with VS
- No anticoagulation/antiplatelet agents for 24 hours t-PA
- Bleeding Precautions
- Avoid invasive procedures (IVs, urinary catheters, NG tube) for first 2 hours after infusion.

Times to Symptomatic ICH

<table>
<thead>
<tr>
<th>Hours from Start of Treatment</th>
<th>Number of SICH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3</td>
<td>5</td>
</tr>
<tr>
<td>4-6</td>
<td>3</td>
</tr>
<tr>
<td>7-12</td>
<td>2</td>
</tr>
<tr>
<td>13-24</td>
<td>4</td>
</tr>
<tr>
<td>24-36</td>
<td>2</td>
</tr>
</tbody>
</table>

TPA Outcomes

0-3 Hour Treatment Window
tPA Outcomes:
3-4.5 Hour Treatment Window

0-4.5 Hour Treatment Window

Recent Endovascular Trials

<table>
<thead>
<tr>
<th>Trial</th>
<th>IV tPA given</th>
<th>TICI 2b/3</th>
<th>Control Group</th>
<th>IA Therapy Group</th>
<th>Control Group</th>
<th>IA Therapy Group</th>
<th>Control Group</th>
<th>IA Therapy Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR CLEAN</td>
<td>90%</td>
<td>59%</td>
<td>19%</td>
<td>33%</td>
<td>6%</td>
<td>8%</td>
<td>23%</td>
<td>21%</td>
</tr>
<tr>
<td>ESCAPE</td>
<td>76%</td>
<td>72%</td>
<td>29%</td>
<td>53%</td>
<td>3%</td>
<td>4%</td>
<td>19%</td>
<td>10%</td>
</tr>
<tr>
<td>EXTEND-IA</td>
<td>100%</td>
<td>86%</td>
<td>40%</td>
<td>71%</td>
<td>6%</td>
<td>0%</td>
<td>20%</td>
<td>9%</td>
</tr>
<tr>
<td>SWIFT-PRIME</td>
<td>98%</td>
<td>88%</td>
<td>36%</td>
<td>60%</td>
<td>3%</td>
<td>0%</td>
<td>12%</td>
<td>9%</td>
</tr>
<tr>
<td>REVASCAT</td>
<td>73%</td>
<td>66%</td>
<td>28%</td>
<td>44%</td>
<td>2%</td>
<td>2%</td>
<td>16%</td>
<td>18%</td>
</tr>
</tbody>
</table>

Antithrombotic Medications

- If reperfusion therapy, defer 24 hours
- If no reperfusion therapy, start by end of hospital day 2 (core measure) to reduce in-hospital mortality
- IV heparin is rarely indicated except as bridge for oral anticoagulation. Some feel it is indicated for carotid or vertebral dissection
- Prescribe at discharge for secondary stroke prevention (core measure)
- Antiplatelet Medication
 - aspirin, clopidogrel, extended release aspirin plus dipyridamole
- Anticoagulation Medication (core measure if a-fib)
 - warfarin, rivaroxaban, dabigatran apixaban, or endoxaban

Ischemic Stroke in the ICU

- Most patients with ischemic stroke are in the ICU are there for observation after recanalization therapy
- Cerebellar Stroke
- Malignant MCA Syndrome
- Brainstem Stroke
Cerebrovascular Anatomy

Cerebral Arteries

- Cerebral Arteries
 - Internal Carotid (ICA)
 - Middle cerebral (MCA)
 - Anterior cerebral (ACA)
 - Posterior cerebral (MCA)
 - Basilar
 - Vertebral

Middle Cerebral Artery

Clinical Presentation

- Small Vessel (Lacunar) Infarct
 - Most common in areas supplied by lenticulate striate (branches of MCA)
 - Lacunes – small holes deep within brain
 - Associated with hypertension and diabetes
 - Result in
 - Pure motor stroke
 - Dysmetria-clumsy hand syndrome
 - Ataxic hemiparesis
 - Pure sensory stroke

Clinical Presentation

- Central Small Vessel Infarcts
 - Thalamus – sensory loss to face, arm, leg and trunk (sensory dysfunction to trunk is almost exclusive to thalamic infarct)
 - Basal Ganglia – Altered integration of motor activities. May appear to be weakness.
 - Internal Capsule – Unilateral motor and/or sensory loss is possible

Clinical Presentation

- Large Vessel Infarct
 - Middle Cerebral Artery
 - Contralateral weakness, face and arm > leg
 - Contralateral sensory loss
 - Expressive and/or Receptive aphasia if in dominant hemisphere (left), and neglect if in non-dominant hemisphere (right)
 - May also see homonymous hemianopsia (contralateral), gaze preference away from affected side, decrease LOC, headache and difficulty reading
Clinical Presentation

• Anterior Cerebral Artery
 – Contralateral weakness leg > hand and face
 – Contralateral sensory loss (may be worse in lower extremities)
 – Flat affect
 – Cognitive impairment
 – Perseveration
 – Urinary incontinence
• Internal Carotid Artery
 – Symptoms of both MCA and ACA infarct. Weakness and sensory loss even throughout.
 – Altered LOC, headache more common due to size of infarct

Clinical Presentation

• Cerebellar Infarct (Vertebrobasilar Insufficiency)
 – Vertigo
 – Impaired Balance
 – Impaired Coordination (Ataxia)
 – Impaired gait
 – High risk of severely impaired swallowing
• Brainstem Infarct (Vertebrobasilar Insufficiency)
 – When due to large vessel occlusion is often lethal
• Posterior Cerebral Artery
 – Visual deficits including peripheral vision
 – Memory (supplies part of temporal lobe)
 – Supplies part of thalamus and brain stem so may cause symptoms from those areas.

Stroke Symptoms Related to area of Brain Involvement

• Right Brain Involvement
 • Left sided hemiplegia
 • Left sided neglect
 • Spatial-perceptual deficits
 • Tends to minimize/deny problems
 • Impulsive, safety problems
 • Rapid performance/short attention span
 • Impaired judgment
 • Impaired time concepts

• Left Brain Involvement
 • Right sided hemiplegia
 • Impaired right/left discrimination
 • Aware of deficits
 • Depression, anxiety, emotional lability, easily frustrated
 • Slow performance, cautious, disorganized
 • Impaired comprehension related to language and math
 • Impaired speech/language aphasias
 • Right neglect possible

Principles and Pearls

• Know your patient’s neurologic baseline and assess for changes
• Know vascular distribution affected and anticipate neuro changes
• Know what reperfusion interventions were used and assess your patient’s response
• Keep the brain perfused
• Keep blood pressure in the target range

Principles and Pearls

• Monitor and optimize cardiac and respiratory function
• Address safety and functional issues
• Educate
• Assess the emotional response of the patient and family
Images have been removed from the PowerPoint slides in this handout due to copyright restrictions.

Hemorrhagic Stroke

- Non-traumatic rupture of a cerebral vessel resulting in an intracranial bleed
- Includes all “spontaneous” bleeds including ruptured vascular malformations such as aneurysm or AVM
- Hemorrhages related to a tumor, recent surgery or treatment effect from whole brain radiation are not considered strokes
- Head CT is considered the gold standard for initial diagnosis

Intracerebral v. Subarachnoid Hemorrhage

- **Intracerebral Hemorrhage**
 - Rupture or leak of blood vessel
 - Most common type of hemorrhagic stroke
 - Mortality rate is 35 – 55%
 - Causes
 - Hypertension (most common cause)
 - Substance Abuse
 - Amyloid angiopathy (seen only in older population)
 - Vascular Malformation

- **Subarachnoid Hemorrhage**
 - 80% of non-traumatic SAH is caused by ruptured aneurysm
 - 5% is caused by arteriovenous malformation (AVM)
 - The other 15% is due to a variety of causes including hypertension, vasculitis, tumor and clotting abnormalities

Hemorrhagic Stroke

- **ICH**
 - Bleeding into the tissue of the brain
 - Typically caused by leakage of a small artery – usually deep
 - Also known as an intraparenchymal hemorrhage

Intracerebral Hemorrhage

- **Subarachnoid Hemorrhage**
 - 80% of non-traumatic SAH is caused by ruptured aneurysm
 - 5% is caused by arteriovenous malformation (AVM)
 - The other 15% is due to a variety of causes including hypertension, vasculitis, tumor and clotting abnormalities
Hemorrhagic Stroke

- SAH
 - Blood enters subarachnoid space from ruptured aneurysm.

Hemorrhagic Stroke

- Arteriovenous Malformation (AVM)
 - Defects in the vascular system
 - Tangles of abnormal blood vessels

ICH and SAH Symptoms

- SAH patient typically presents with “the worst headache of their life”

ICH patient may have sudden severe HA or mild/moderate HA that worsens over time

Other Symptoms of Hemorrhagic Stroke

- Altered or loss of consciousness
- Visual disturbance common with SAH (“blinding white light”, “flashing light”)
- Focal deficits vary depending on size and location of hemorrhage

Diagnostic Evaluation

- Physical Exam/History/Time of onset
- CT/CTA or MRI/MRA
- Cerebral Angiography
- Lumbar puncture if history suggestive of SAH but CT negative and delay in imaging

ICH Treatment

- Current evidence-based guidelines recommend aggressive care x 24 hours before considering comfort measures
- Primary medical management
 - Airway management
 - Blood pressure control
 - Reversal of anticoagulation or coagulopathy
 - ICP management/minimize secondary brain injury
 - Avoid complications
- Surgical Intervention
 - Decompressive craniotomy
 - Hematoma evacuation (only indicated if hematoma is near brain surface or in cerebellum)
<table>
<thead>
<tr>
<th>SAH Facts</th>
<th>Risk Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Affects 30,000 Americans annually</td>
<td>• Hypertension</td>
</tr>
<tr>
<td>• Mortality as high as 50%</td>
<td>• Obesity</td>
</tr>
<tr>
<td>• Significant morbidity</td>
<td>• Cigarette smoking</td>
</tr>
<tr>
<td>• Incidence increases with age</td>
<td>• Alcohol</td>
</tr>
<tr>
<td>– Most commonly between ages 40 and 60</td>
<td>• Polycystic kidney disease</td>
</tr>
<tr>
<td>• Gender and racial differences</td>
<td>• Connective tissue disease</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Causes of SAH</th>
<th>Treatment of Ruptured Aneurysm</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Vascular malformations</td>
<td></td>
</tr>
<tr>
<td>– Aneurysms</td>
<td></td>
</tr>
<tr>
<td>– Arteriovenous malformations</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coiling and Clipping</th>
<th>Neurosurgical Management</th>
</tr>
</thead>
</table>

Coiling

Stent Assisted Coiling

Balloon Assisted Coiling

Balloon Assisted Coiling

Pipeline™ Stent

AVM Management
Images have been removed from the PowerPoint slides in this handout due to copyright restrictions.

Embolization of AVM

Embolization of AVM

Surgical Removal of AVM

Complications Associated with Aneurysmal Subarachnoid Hemorrhage

Hunt and Hess Scale

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Unruptured aneurysm</td>
</tr>
<tr>
<td>1</td>
<td>Asymptomatic, mild headaches, slight nuchal rigidity</td>
</tr>
<tr>
<td>2</td>
<td>Cranial nerve deficits, moderate to severe headache, nuchal rigidity</td>
</tr>
<tr>
<td>3</td>
<td>Mild to moderate focal deficits</td>
</tr>
<tr>
<td>4</td>
<td>Stupor, hemiparesis, early decerebrate rigidity</td>
</tr>
<tr>
<td>5</td>
<td>Deep coma, decerebrate rigidity</td>
</tr>
</tbody>
</table>
Images have been removed from the PowerPoint slides in this handout due to copyright restrictions.

Miller-Fisher Grading System

<table>
<thead>
<tr>
<th>Grade</th>
<th>Blood on CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>No subarachnoid blood detected</td>
</tr>
<tr>
<td>II</td>
<td>Diffuse, thin layers of SAH < 1 mm thick</td>
</tr>
<tr>
<td>III</td>
<td>Localized clot(s) > 3x5 mm in the cisterns or transverse planes and/or vertical layers of SAH > 1 mm thick</td>
</tr>
<tr>
<td>IV</td>
<td>Intracerebral/intraventricular clot with diffuse of no SAH</td>
</tr>
</tbody>
</table>

Rebleed

- 20% rebleed within first 2 weeks (4% within first 24 hours)
- 50% of patients with rebleed will die
- Prevention
 - Rapid intervention (coiling, clipping)
 - Blood pressure management
 - Subarachnoid “Precautions”

Hydrocephalus

- Acute Hydrocephalus
 - Occurs within first 24 hours
 - Often presents as abrupt onset of stupor or coma
- Subacute Hydrocephalus
 - Develops in a few days to a week
 - Onset is usually gradual with decreasing LOC
- Delayed Hydrocephalus
 - Develops 10 days or more after SAH

Vasospasm

- Angiographically evident vasospasm is believed to exist in up to 80% of patients
- Symptomatic vasospasm occurs in 35-40% of aneurysmal SAH
- Onset is between day 4 and 14 with peak incidence at day 7-8.
- Mortality rate associated with symptomatic vasospasm is 25-35%
- The vessel diameter is narrowed by > 50% in symptomatic vasospasm

Risk Factors for Vasospasm

- Miller-Fisher grade III (one study showed 96% developed symptomatic vasospasm)
- Hypotension (SBP < 180 mmHg at presentation to hospital)
- Hypovolemia
- Site of aneurysm (anterior circulation aneurysms, particularly at bifurcations of ICAs and MCAs
- Acute hydrocephalus
- Higher Hunt and Hess grade (3,4,5)
- Smoking

Signs and Symptoms of Vasospasm

- Decreased level of consciousness
- Confusion/disorientation
- Focal neurological deficits
 - Symptoms depend on which vessel is in spasm
 - The vessel in spasm is often in proximity to the hemorrhage but may be remote if cisternal clot is present
 - MCA is most common vessel to spasm
 - Contralateral hemiparesis/plegia
 - Contralateral sensory alteration
 - Speech alteration (if dominant hemisphere)
 - Contralateral neglect (if non-dominant hemisphere)
Diagnosis of Vasospasm

- Acute neurologic deterioration after day 3
- Exclusion of structural causes (hemorrhage, hydrocephalus, cerebral edema)
- Absence of other explanations (electrolyte abnormalities, seizure, hypoxia)
- Transcranial Doppler (increased velocities)
- Perfusion CT
- Angiography

TCD Values in Vasospasm

<table>
<thead>
<tr>
<th>Vessel</th>
<th>Normal Velocity</th>
<th>Vasospasm</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCA 35-65</td>
<td>80-120 = probable mild spasm</td>
<td>> 160 = severe spasm</td>
</tr>
<tr>
<td>ACA 35-55</td>
<td>> 120 = probable spasm</td>
<td>> 140 = definite spasm</td>
</tr>
<tr>
<td>BA 25-45</td>
<td>60-90 = probable spasm</td>
<td>> 90 = definite spasm</td>
</tr>
</tbody>
</table>

Prevention of Vasospasm

- Nimodipine
 - Must be started within 72 hours
 - Continued for 21 days
 - Must be given orally or via feeding tube
- Maintain “high” euvolemia
- Permissive hypertension
- Evidence suggests that maintaining Magnesium level > 2.0 may decrease incidence of vasospasm

Treatment of Vasospasm

- Nimodipine
- Triple “H” Therapy
 - High Euvolemia (take insensible loss into consideration)
 - Hypertension (target SBP 160-180)
 - Hemodilution (Ideal Hct ~ 32%)
- Arterial Dilation Procedures
 - Smooth muscle relaxants (papaverine, nicardipine)
 - Angioplasty

Angioplasty of vasospasm

Hyponatremia

- Transient SIADH in the first 1-2 days (mild)
- Cerebral Salt Wasting Syndrome (CSWS)
 - Peak incidence 5-6 days after SAH
 - Caused by release of natriuretic peptides (mechanism is unknown)
Cerebral Salt Wasting Syndrome

- **Signs/Symptoms**
 - Serum Sodium < 135
 - Signs of hyponatremia (LOC, N/V, confusion, seizures)
- **Prevention**
 - Avoid hypotonic solutions
 - Maintain euvolemia
 - Isotonic maintenance solution
 - Hypertonic saline for volume expansion
- **Treatment**
 - Measures used for prevention AND give sodium (NS, NaCl tabs, hypertonic saline)

EKG Abnormalities

- Occurs in 35-50% of patients
- Peak incidence is day 2-3
- Primarily due to catecholamine release and adrenal stimulation
- Most common abnormality is prolonged QTc (61%) but arrhythmias, conduction abnormalities and ischemic changes may all occur
- No known prevention, treat using standard treatment for identified abnormality, avoid drugs & factors that may exacerbate.

Fever

- **Etiology**
 - Hemolysis of subarachnoid blood (peak day 4)
 - Infection
 - Pituitary/hypothalamic dysfunction
- **Treatment**
 - Antipyretic agents
 - Cooling measures (avoid shivering!)

Seizures

- Risk of seizures for first 3-5 days
- Prophylactic antiepileptic drugs (AEDs) are not recommended if patient is seizure free after day 5
- Phenytoin/fosphenytoin has been found to worsen cognitive and functional outcomes following SAH and should be avoided.
- Levetiracetam is now often being used as a prophylactic AED.

Changing the Perception of Stroke

- Stroke is unpreventable
- Cannot be treated
- Strikes only the elderly
- Recovery ends 6 months after a stroke
- Stroke is largely preventable
- Requires urgent treatment
- Can happen to anyone
- Stroke recovery can continue throughout life

QUESTIONS??

©TCHP Education Consortium 1999, Revised August 2015
Anterior Cerebral Artery

- Supplies medial surfaces of the cerebral hemispheres
- Complete occlusion is the least common cause of stroke

ACA Occlusion

- Contralateral hemiplegia greatest in the foot and thigh, shoulder
- Mild sensory loss which follows the pattern of the weakness
- Personality, behavioral changes

Middle Cerebral Artery

- Supplies large portion of the lateral surfaces of the frontal, parietal, and temporal lobes and basal ganglia
- Most common vessel for stroke to occur

MCA Occlusion

- Contralateral hemiplegia greater in face and arm
- Contralateral sensory impairment varying in severity
- Left: severe aphasia
- Right: neglect, poor motivation, constructional apraxia

Alterations in sensation and perception

- Neglect
 - Seen more with right hemisphere involvement
 - Disorder of attention
 - Typically unilateral
<table>
<thead>
<tr>
<th>Posterior Circulation: Vertebral Arteries</th>
<th>Basilar Artery</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Occlusion or stenosis may not cause neurologic deficit if it does not extend into the basilar artery and does not impair blood flow into any of the tributaries</td>
<td>• Supplies brainstem, primarily the pons</td>
</tr>
<tr>
<td>• Retrograde flow following crossover from one vertebral to the other provides adequate blood supply</td>
<td>• Branches to form right and left posterior cerebral arteries – supplies midbrain and diencephalon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Basilar Artery Occlusion</th>
<th>Basilar Artery Occlusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Quadraparesis or quadraparalysis possible</td>
<td>• Inability to move eyes</td>
</tr>
<tr>
<td>• Flaccidity</td>
<td>• Decreased level of consciousness</td>
</tr>
<tr>
<td>• May change to increase tone or hyporeflexia</td>
<td>• “Locked in”</td>
</tr>
<tr>
<td>• Normal sensation</td>
<td></td>
</tr>
<tr>
<td>• Cranial nerve impairment</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Posterior Cerebral Artery</th>
<th>PCA Occlusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Supplies midbrain, thalamus, occipital lobes and medial-posterior portions of the temporal lobes</td>
<td>• Hemiplegia</td>
</tr>
<tr>
<td></td>
<td>• Hyperesthesia</td>
</tr>
<tr>
<td></td>
<td>• Decreased level of consciousness</td>
</tr>
</tbody>
</table>